Developmental Trajectories and Health Outcomes Among Emerging Adult Women and Men

Patricia N. E. Roberson¹, Jerika C. Norona¹, Jennifer Zorotovich², and Zachary Dirnberger²

Abstract
With a recent sample of emerging adults, the present longitudinal study examines multiple role trajectories that emerging adult women and men in the United States tend to traverse between the ages of 18 and 25, thereby partially replicating and furthering the work of Amato et al. Furthermore, the present study examines the physical and mental health of emerging adults in various trajectories. Findings revealed three trajectories for emerging adult women, including (1) work and school to some family formation (56.2% of women), (2) school to family formation (11.5% of women), and (3) some school to early family formation (32.3% of women). Women who transitioned from (3) some school to early family formation were more psychologically distressed than those who transitioned from (1) work and school to some family formation. Women who transitioned from (3) some school to early family formation also experienced significant declines in physical health. For emerging adult men, findings revealed three trajectories, including (1) work and early family formation (9.4% of men), (2) school to family formation (32.1% of men), and (3) school to work (58.5% of men). Men in the (2) school to family formation trajectory experienced less psychological distress over time. These findings point to certain trajectories that might be particularly beneficial for emerging adults' physical and psychological health.

Keywords
trajectories, transitions to adulthood, life course, romantic relationships, parenting, work, education

According to the life-course theory (Elder, 1985), development is lifelong, and over time, individuals navigate many social responsibilities. During emerging adulthood (Arnett, 2000), young people explore and navigate social roles in the domains of love, work, and worldviews and occupy multiple roles in these areas simultaneously. The process by which these roles are combined is considered an individual’s role configuration (MacMillan & Eliason, 2003). A range of roles and role configurations exist within any given population, and the meanings of roles are interdependent (Jackson & Berkwitz, 2005). Although researchers have examined various pathways that emerging adults take as they develop their social roles (e.g., Amato et al., 2008; Macmillan & Copher, 2005; Osgood, Ruth, Eccles, Jacobs, & Barber, 2005; Sandefur, Eggerling-Boeck, & Park, 2005), studies using a more recent cohort of emerging adult women and men and those that consider outcome implications of diverse trajectories are still needed. Thus, the present study examined the multiple role trajectories that emerging adult women and men in the United States tend to traverse between the ages of 18 and 26. Additionally, this study explored physical and mental health outcomes among those in various trajectories to determine whether some pathways are more developmentally adaptive than others.

Role Trajectories in Emerging Adulthood
Research dedicated to exploring divergent pathways, as opposed to aggregate pathways, is necessary in order to capture more diversified trajectories from adolescence into adulthood. Rather than characterizing a developmental stage by one pathway, exploring divergent pathways can unearth the varying trajectories that young people take. For example, Osgood, Ruth, Eccles, Jacobs, and Barber (2005) identified six unique paths toward adulthood taken by 24-year-olds. Researchers examined various milestones that emerging adults accomplished by age 24, including getting married, establishing a long-term career, becoming a parent, earning an advanced educational degree, and buying a home. Of the six trajectories, the largest group was educated single, which included

¹Department of Psychology, University of Tennessee, Knoxville, TN, USA
²School of Human Ecology, College of Health and Human Sciences, Georgia Southern University, Statesboro, GA, USA

Corresponding Author:
Jerika C. Norona, MA, Department of Psychology, University of Tennessee, 305 Austin Peay Building, Knoxville, TN 37996, USA.
Email: jnorona@vols.utk.edu
individuals who pursued higher education, were on their way to establish careers, and were not romantically involved. Additionally, Macmillan and Copher (2005) assumed a life-course perspective in examining the various pathways that African American, Hispanic, and European American women take toward family formation (romantic relationship formation and parenthood). Here, African American women had an approximated equal probability of taking one of the three pathways: rapid school-to-parent, school-to-parent, or school-to-work. Hispanic women were most likely to follow the school-to-family pathway rather than the school-to-work-to-family or the extended schooling-delayed work pathways. Additionally, European American women had relatively equal probabilities of taking the school-to-early work, extended schooling-delayed work, the school-to-work-to-work and family, and the school-to-early family pathways. Finally, Sandefur, Eggerling-Boeck, and Park (2005) compared two cohorts of emerging adult women and men and found five different pathways as well as decreases in early marriage and completing 4 years of college and an increase in parenthood prior to marriage. Together, these studies show that there are a number of different social roles that emerging adults can occupy at a given time. Additionally, there are many pathways emerging adults can take with similar proportions, rather than one dominant pathway.

Building on the aforementioned research, Amato et al. (2008) included cohabiting dating couples as a relationship variable, given its prevalence in emerging adulthood. This study used a sample of women ages 18–25 (N = 2,290) from the National Longitudinal Study of Adolescent Health (Add Health). In order to estimate different developmental trajectories, Amato et al. used five dichotomous variables (i.e., school, employed, cohabiting, married, and parenthood) at five time points (i.e., ages 18, 19, 20, 22, and 23). Amato et al. found seven different developmental trajectories (i.e., classes) using latent transition analysis (LTA), including college no-family, high school no family formation, cohabiting without children, married mothers, single mothers, cohabiting mothers, and inactive.

Although these classes revealed evidence for within-population differences among emerging adult women, there are limitations that make Amato et al.’s (2008) findings less generalizable to current emerging adults. First, Add Health sampled participants at three time points across an 8-year time span (Wave 1 = 1994–1995, Wave 2 = 1996, and Wave 3 = 2001–2002). Emerging adults who were 18 years old in 1994–1995 may have experienced emerging adulthood differently than current emerging adults. Since 1994–1995, there have been substantial societal changes, including the increase of emerging adults attending college, substantial changes in technology (e.g., wireless Internet, laptop computers, smartphones), the introduction of social media (e.g., Facebook, Snapchat, Google Plus), and greater fluctuations in the economy, which can all influence career and family trajectories of current emerging adults (Arnett, 2014). Therefore, a more recent data set will describe within-population variation among emerging adults that better reflect the current cohort of emerging adults. The second limitation of this work was the inclusion of only women. The decision to do so, however, was justified by researchers who explained that women tend to report parenthood and relationship status more accurately (Amato et al., 2008). Importantly, as the pathways toward adulthood vary, the inclusion of men in such studies may provide more details to accurately assess within-population variation.

The aforementioned studies have explored various pathways to adulthood and have deepened our understanding of young people. To build on this knowledge base, an important step for research involves understanding the developmental trajectories of contemporary emerging adult women and men. Additionally, another question remains: Are there paths that are more adaptive than others? To address this question, research on health outcomes related to these trajectories is also warranted. Such an investigation will highlight developmental pathways for current emerging adults as well as whether such pathways are beneficial for physical and/or mental health.

Developmental Roles in Emerging Adulthood

Romantic relationships. Cohabitation is a frequent occurrence during emerging adulthood (Smock, 2000), with an approximated 40% increase in cohabitation from the late 1990s to the early 2000s (Lichter, Turner, & Sassler, 2010). About 50–60% of emerging adult couples report cohabiting prior to marriage (Bumpass & Lu, 2000; Stanley, Whitton, & Markman, 2004). This trend has been attributed to shifts in societal standards (Jamison & Proulx, 2012), including prolonged age of marriage and entry into parenthood outside of marriage in industrialized cultures (Smock, 2000). Seemingly, for some, cohabitation has replaced legal marriages. Considering that cohabitation is a common occurrence among emerging adults, this form of relationship formation was considered akin to marriage.

Parenthood. Recent research has indicated that the age of entry into parenthood has increased less rapidly than the age of entry into marriage, resulting in more women entering parenthood prior to marriage (Arnett, 2014; Hymowitz, Carroll, Wilcox, & Kaye, 2013). Although single parenthood has become increasingly accepted, it remains associated with difficulty in attaining certain resources, such as educational and career opportunities (Hymowitz et al., 2013). Therefore, the current study pays close attention to how the role trajectory of parenthood coincides with romantic relationship formation.

Employment and education. Resulting from both the outsourcing of industrial labor and the widespread acceptance of human capital theory by policy makers, there has been a marked shift toward an information-based economy (Côte, 2014). This shift has made it necessary for many Americans to earn college degrees or other credentials to maintain their marketability within the changing workforce. Approximately 66% of high school graduates in 2012 pursued higher education, and of
Transition into Adulthood (2007), which is part of the Data were drawn from the Transition into Adulthood project. Therefore, role trajectories may drastically differ between emerging adults who pursue education and those who pursue a career-based trajectory following high school.

Gender Differences in Role Trajectories

Emerging adult women and men may differ in their pathways toward adulthood. With a Swiss sample of emerging adults, Widmer and Ritschard (2009) found that men were more likely to follow a general trend of pursuing higher education followed by entry into the workforce, whereas women’s pathways took various shifts across part-time work, full-time work, and family. Considering women’s and men’s stability in their trajectories, men’s roles tended to solidify after age 30, whereas women’s roles continued to shift. These findings may be due to gender differences in the association between parental and occupational roles; specifically, women seemed to shift roles as a way of adjusting to parenthood, whereas men tended to be more stable in their careers (Widmer & Ritschard, 2009). Osgood et al. (2005) found a similar pattern of gender differences in pathways to adulthood with an American sample of emerging adults. These findings suggest that gender is an important variable to explore, as women and men might follow different pathways toward adulthood.

The Current Study

The present study utilized a recent sample of emerging adult women and men, which included individuals who have and have not attended college, and investigated differences in developmental trajectories. This sample represented both a broader and more recent population than that studied in Amato et al. (2008). Additionally, the present study investigated physical and mental health outcomes for emerging adults across various trajectories to determine whether certain pathways are more adaptive, in terms of health outcomes, than others. The unique developmental tasks associated with emerging adulthood and the rapidly shifting cultural trends that are embedded in American society further support the importance of replicating and extending previous work. Results allow scholars and practitioners to gain a more nuanced understanding of emerging adults rather than the college student population typically observed in the literature. Furthermore, results reveal adaptive trajectories by examining health outcomes, allowing the possibility of scholars and practitioners to encourage various pathways over others.

Method

Procedures

Data were drawn from the Transition into Adulthood project (Transition into Adulthood Study, 2007), which is part of the larger ongoing Panel Study of Income Dynamics (PSID, 2015). The PSID is a nationally representative sample of Americans and the longest running household study survey in the world. Participants in the Transition into Adulthood project are the grandchildren of the original PSID participants. Starting in 2005, they were contacted for biannual phone interviews once they turned 18. For the Transition into Adulthood data set, participants are eligible if their parent was part of the larger study; only one sibling from each family is selected to participate in the next generation of the ongoing study.

The participants in the Transition into Adulthood project were assessed 4 times (i.e., 2005, 2007, 2009, and 2011). While each individual was eligible to participate in all four data collection waves, each participant was not assessed at every age in the emerging adulthood time period (e.g., 18, 19, 20, etc.). Therefore, to assess trajectories of role configurations across all ages in the emerging adulthood time span, it is necessary to consider the data as both longitudinal and cross-sectional, given that data were collected every other year. In other words, when we examine the data by age, some age points are systematically missing for individuals; therefore, each age can consist of a predominantly different group of individuals depending on how old they were during the initial collection. To allow for the analysis of changes in role configurations by age for both women and men, responses were binned into eight age bins using age in years at the time of the assessment. One-year intervals were used for all age bins (e.g., 18–18.9) except the last age, which used a 2-year interval due to sparse data (i.e., 25–26.9).

Participants

The Transition into Adulthood project sampled 2,164 participants ($n = 1,099$ women and $n = 1,065$ men) across four different time points. In 2005 (Time 1), 90.2% of participants reported being non-Hispanic. Participants were mostly European American (50.7%), followed by African American (41.9%) then Asian, American Indian, Pacific Islander, and Other categories (<1%). In 2005, participants were on average 19.11 years old ($SD = 0.94$), and in 2011, participants were on average 23.59 years old ($SD = 6.07$). In terms of responsibility for earning their own income, in 2005, 52.7% of participants were half or mostly responsible for earning their own income, 20.8% of participants were responsible for none or a minimal amount of personal income earnings, and 26.4% of participants were fully responsible for earning their own income. However, in 2011, 47.1% of participants were fully responsible for earning their own income, 39.1% of participants were half or mostly responsible for earning their own income, and 13.8% of participants were responsible for none or a minimal amount of personal income earnings. In 2011, men had an average income of US$5,159.66 ($SD = US$10,129.35) and a median income of US$0.00. In 2011, women had an average income of US$3,198.77 ($SD = US$7,399.54) and a median income of US$0.00, indicating that the distribution of income was skewed for men and women.
Measures

Case indicator variables. Parenthood was measured across all 4 years by a single item: “How many biological, adopted, or stepchildren do you have?” with open-ended response options. For this study, responses were coded as 0 = no children or 1 = one or more children. The following are the percentages of individuals with one or more children at the time of assessment: in 2005, women = 6.9% and men = 2.3%; in 2007, women = 12.8% and men = 6.7%; in 2009, women = 19.7% and men = 13.2%; and in 2011, women = 29.2% and men = 17.9%. When examining proportions for parenthood by age (rather than year of data collection), we found that women ranged from 7.7% to 43.1% and men ranged from 5.8% to 33.1%.

Relationship status was assessed across all 4 years with a single item: “What is your relationship status?” with response options of 1 = never married, cohabiting; 2 = never married, not cohabiting; 3 = married, spouse present; 4 = married, spouse not present; 5 = separated; 6 = divorced, cohabiting; 7 = divorced, not cohabiting; 8 = widowed; and 9 = don’t know or refused. This item was recoded into a dichotomous variable such that individuals who were cohabiting (both never married and divorced individuals), married, or separated were coded as 1 = in a relationship and 0 = not in a relationship (individuals were coded as missing if they responded “don’t know or refuse”). The following are the percentages of individuals who were in a romantic relationship: in 2005, women = 5.2% and men = 3.5%; in 2007, women = 12.0% and men = 7.3%; in 2009, women = 19.5% and men = 13.1%; and in 2011, women = 28.7% and men = 19.5%. When examining proportions for relationship status by age (rather than year of data collection), we found that women ranged from 9.5% to 42.3% and men ranged from 3.9% to 38.4%.

College education was measured across all 4 years in a section of the questionnaire with a single question: “Are you going to school full-time or part-time?” with response options of 1 = full-time, 2 = part-time, 8 = don’t know or refused, and 0 = inappropriate (e.g., never graduated from high school, not currently attending college). Participants were not asked this question if they had never or had not yet graduated from high school. This item was recoded such that 1 = full- or part-time college attendance, 0 = no current college attendance, and missing for “don’t know or refuse.” The following are the percentages of individuals who were in college full- or part-time: in 2005, women = 20.8% and men = 16.0%; in 2007, women = 25.2% and men = 20.7%; in 2009, women = 32.8% and men = 25.6%; and in 2011, women = 34.7% and men = 29.3%. When examining proportions for education age (rather than year of data collection), we found that women ranged from 16.2% to 54.6% and men ranged from 12.1% to 50.0%.

Employment status was measured across all 4 years by two questions: Question 1, “We would like to know about what you do—are you working now, looking for work, keeping house, a student, or what?” had response options of 1 = working now, including military; 2 = only temporarily laid off, sick or maternity leave; 3 = looking for work, unemployed; 4 = retired; 5 = disabled, permanently or temporarily; 6 = keeping house; 7 = student; or 8 = Other. Question 2, “Are you doing any work for money now?” had response options of 1 = no, 5 = yes. For the dichotomous variable employment status, participants were coded as 1 if they were “working now, including military” and/or if they responded “yes” to working for money. All other participants were coded as 0 = not working. The following are the percentages of individuals working for money: in 2005, women = 30.6% and men = 27.5%; in 2007, women = 46.4% and men = 42.3%; in 2009, women = 68.1% and men = 60.3%; and in 2011, women = 81.3% and men = 79.6%. When examining proportions for employment by age (rather than year of data collection), we found that women ranged from 76.5% to 85.8% and men ranged from 73.0% to 84.8%.

Well-being variables. Health was assessed across all four time points by a single question: “Would you say your health in general is excellent, very good, good, fair, or poor?” with the following response options of 1 = excellent, 2 = very good, 3 = good, 4 = fair, and 5 = poor. This score was recoded, so that higher scores indicated better physical health. For men, health score averages ranged from 3.69 (SD = 1.05) to 3.94 (SD = 0.89) between ages 18 and 26. For women, health score averages ranged from 3.61 (SD = 0.86) to 3.82 (SD = 0.84) between ages 18 and 26.

Mental Health—Psychological Distress is a construct that was developed and computed by the authors of the survey (PSID, 2015). This composite measure consisted of 6 items that assess psychological symptoms (e.g., “How often did you feel nervous in the past month?,” “How often did you feel too sad in the past month?”), with responses ranging from 1 = all of the time to 5 = none of the time. All items were summed and recoded, so that higher scores indicated more psychological distress. For men, psychological distress averages ranged from 4.15 (SD = 3.46) to 4.88 (SD = 3.73) between ages 18 and 26. For women, psychological distress averages ranged from 4.46 (SD = 5.38) to 5.70 (SD = 3.78) between ages 18 and 26.

Mental Health—Risky Behavior is a construct that was also developed and computed by the authors of the original survey (PSID, 2015). This composite measure consisted of 5 items that assessed engagement in risky behaviors (e.g., “Now please think about the last 6 months. About how often in those 6 months did you do something you knew was dangerous just for the thrill of it?”), with responses ranging from 1 = never to 7 = 21 or more. All items were summed and coded, so that higher scores indicate more risky behaviors. For men, risky behavior averages ranged from 1.48 (SD = 0.65) to 1.69 (SD = 0.82) between ages 18 and 26. For women, risky behavior averages ranged from 1.19 (SD = 0.45) to 1.35 (SD = 0.74) between ages 18 and 26.

Analytic Procedures

To determine role trajectories for emerging adult women and men, we used second-order latent class analysis (LCA; Macmillan & Copher, 2005). Heterogeneity among people is a statistical dilemma that is often encountered in social science
research. Muthén and Muthén (2000) suggested that determining different heterogeneous classes is important for determining antecedences and consequences of a particular phenomenon. He emphasized that a covariate may have a different influence on a factor for one group compared to another. Therefore, simply examining the global effect (e.g., averages) on one variable has on another variable can be misleading and not generalizable to all clusters of individuals in the population. To account for heterogeneity, statistical methods have been developed using categorical latent variables as outcomes; these methods are termed finite mixture models (e.g., LCA and LTA). However, in some cases, examining trajectories over time cannot be estimated in a single analysis because there are too many parameters to be estimated at once and the statistical power is not available. As discussed in more detail by Macmillan and Copher (2005), using LTA with full information maximum likelihood (ML) would require constructing a transition matrix of all of the observed variables across all of the age periods in this matrix. Despite our relatively large sample size ($n = 1,099$ women and $n = 1,065$ men), this statistical method would produce very sparse data and many empty cells. Because we seek to determine different role trajectories across emerging adulthood developmental period, a sequential cohort analysis using second-order LCA is the most appropriate statistical method for the present study and data. Thus, we adapted the method outlined by Macmillan and Copher (2005) and analyzed the data in two stages.

First, we assessed the number of role configurations (classes) at each age using LCA. The appropriate number of classes was determined through goodness-of-fit measures such as Akaike information criteria (AIC), Bayesian information criteria (BIC; Muthén & Muthén, 2000), and functionality of the classes (i.e., how useful or interpretable classes were; Muthén & Muthén, 2000). We also used statistical methods to determine the appropriate number of classes: the Vuong-Lo-Mendell-Rubin likelihood ratio test and the Lo-Mendell-Rubin adjusted likelihood ratio test. For these tests, a nonsignificant p value indicates that the model with one fewer class is the optimal model (Muthén & Muthén, 2000; Nylund, Asparouhov, & Muthén, 2007). As recommended by Muthén and Muthén (2000), when there is disagreement among these methods, the class that makes the most practical sense (i.e., functionality) was selected. Additionally, we reported entropy in Table 1, which is commonly reported for the selected model. Using these criteria, we determined the appropriate number of role configurations for each of the ages in separate analyses.

Once the appropriate number of role configurations for each age-group was determined, the role configuration class assignments were used as categorical variables in the second-order LCA to determine the number of different role trajectories. For this analysis, we did not use the class probabilities (i.e., the probability of an individual being in a given class) to estimate trajectories. Rather, we used the assigned class (i.e., the most likely latent class membership based on the posterior probabilities), which may increase error in estimating the second-order LCA but allows us to estimate the role trajectories using categorical probabilities rather than mean scores (see Macmillan & Copher, 2005). The same method for determining the best fitting model in the role configuration at each age was employed to determine the appropriate number of role trajectories. The most likely latent class membership of second-order LCA, like with the first-order LCA, was used as an observed variable in order to determine differences in the outcome variables (i.e., Physical Health, Mental Health—Psychological Distress, and Mental Health—Risky Behavior).

A conditional probability is the probability that an individual in a given class of the latent variable will be at a particular level of an examined variable. For the present study, we focused on the conditional probability of the role being “present” (e.g., working full- or part-time) for each of the first-order LCA classes when computing the second-order LCA (or the role trajectories). In order to develop a visual representation of each of the role trajectories for women and men, the conditional probabilities from the first- and second-order LCAs were combined in Excel. For each point in the role trajectories, we used the following equation to combine the conditional probability scores:

Expected role probability at a given age for specific trajectory

\[P(X_{@i}) = (\text{first LCA probability for class 1 presence of specific role} \times \text{first LCA class 1 probability of being in second LCA trajectory } X) + \text{first LCA probability for class 2 presence of specific role} \times \text{first LCA class 2 probability of being in second LCA trajectory } X) + \ldots + \text{first LCA probability for class } k \text{ presence of specific role} \times \text{first LCA class } k \text{ probability of being in second LCA trajectory } X). \]

This computation is completed for each age and for each role and combined into a single graph which visualizes the trajectory groups. These graphs are then interpreted by visually examining the rise and fall over time of the probability of the presence of specific roles compared to the other role trajectories (see Macmillan & Copher, 2005).

To examine if changes in well-being outcomes differed by assigned trajectories, we used latent growth curve (LGC) models (Duncan, Duncan, & Strycker, 2013). LGC models are a form of structural equation models (SEMs) that produce latent variables for an intercept and slope. Variables can be included in the model to predict differential change in the variable of interest (e.g., Does an individual’s well-being change differently depending on her or his assigned role trajectory?) or differences in the baseline score (e.g., Is well-being at 18 different for individuals depending on their assigned role trajectory?). For each gender and outcome variable, we assessed two LGC models: (a) a fixed model where each age was assigned a sequential number in equally spaced increments (e.g., $@0$, $@1$, $@2$, $@3$, $@4$, $@5$, $@6$, $@7$) and (b) a free model where only the first ($@0$) and last ($@7$) variables in the series were fixed and the others were allowed to vary in a nonlinear fashion. Because
of the nature of the sequential cohort examining different individuals at different ages, we knew it was possible that change may not occur in a linear fashion and allowing scores to vary between the first and last age may capture change better than a strict linear change. To determine which model (fixed or free) fit the data best, we examined AIC and BIC scores; lower scores indicated a better fit. In the cases where AIC and BIC scores indicated different models were a better fit, we also examined common SEM fit indicators: root mean square error of approximation, Tucker–Lewis index, and comparative fit index (Kline, 2005). When estimating the model, the covariance of the intercept and slope were not included and the residual variances of the repeated measures were not fixed over time. Models were estimated using ML. Also, to account for the sparse data, which often accompanies sequential cohort designs, we set convergence equal to zero. To examine how role trajectories were related to change in well-being outcomes, we dummy coded the role trajectory categorical variables, so that the largest role trajectory group is the reference group. We also controlled for racial minority status (0 = European American, 1 = all else), ethnic minority status (0 = non-Hispanic, 1 = Hispanic), and self-reported annual income.

<table>
<thead>
<tr>
<th>Class #</th>
<th>AIC</th>
<th>BIC</th>
<th>VLMR-LRT</th>
<th>LMR-ALRT</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,663.888</td>
<td>1,680.369</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,586.103</td>
<td>1,623.186</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,564.93</td>
<td>1,622.614</td>
<td>0</td>
<td>0</td>
<td>.81</td>
</tr>
<tr>
<td>4</td>
<td>1,572.13</td>
<td>1,650.416</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Age 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,635.627</td>
<td>1,651.817</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,590.185</td>
<td>1,626.611</td>
<td>0.07</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,587.778</td>
<td>1,644.441</td>
<td>0.01</td>
<td>0.01</td>
<td>.49</td>
</tr>
<tr>
<td>4</td>
<td>1,595.252</td>
<td>1,672.152</td>
<td>0.11</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Age 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2,310.628</td>
<td>2,327.542</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2,200.205</td>
<td>2,238.261</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2,191.233</td>
<td>2,250.432</td>
<td>0.006</td>
<td>0.007</td>
<td>.69</td>
</tr>
<tr>
<td>4</td>
<td>2,199.701</td>
<td>2,280.043</td>
<td>0.22</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Age 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,623.814</td>
<td>1,639.212</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,559.007</td>
<td>1,593.65</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,554.866</td>
<td>1,608.757</td>
<td>0.001</td>
<td>0.001</td>
<td>.68</td>
</tr>
<tr>
<td>4</td>
<td>1,560.602</td>
<td>1,633.739</td>
<td>0.43</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Age 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,649.787</td>
<td>1,665.365</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,582.981</td>
<td>1,618.031</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,587.311</td>
<td>1,641.833</td>
<td>0.07</td>
<td>0.08</td>
<td>.50</td>
</tr>
<tr>
<td>4</td>
<td>1,594.263</td>
<td>1,668.256</td>
<td>0.22</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>Age 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,176.69</td>
<td>1,190.918</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,149.515</td>
<td>1,181.527</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,148.083</td>
<td>1,197.878</td>
<td>0.004</td>
<td>0.004</td>
<td>.74</td>
</tr>
<tr>
<td>4</td>
<td>1,155.515</td>
<td>1,223.094</td>
<td>0.35</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Age 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,192.368</td>
<td>1,206.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,169.544</td>
<td>1,201.521</td>
<td>0</td>
<td>0</td>
<td>.64</td>
</tr>
<tr>
<td>3</td>
<td>1,172.556</td>
<td>1,222.297</td>
<td>0.05</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Age 25 and 26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,149.513</td>
<td>1,163.631</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,092.349</td>
<td>1,124.114</td>
<td>0</td>
<td>0</td>
<td>.65</td>
</tr>
<tr>
<td>3</td>
<td>1,096.91</td>
<td>1,146.322</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

Note. The class that fits the data best are given in boldface. AIC = Akaike information criteria; BIC = Bayesian information criteria; VLMR-LRT = Vuong-Lo-Mendell-Rubin likelihood ratio test; LMR-ALRT = Lo-Mendell-Rubin adjusted likelihood ratio test.
All analyses were conducted in Mplus. All missing data were handled within Mplus 7.2 (Muthén & Muthén, 2000), which uses full information ML estimation to handle data missing at random.

Results

Women's Role Trajectories

Role trajectories. After running a series of LCAs, we exported the best fitting classes for each of the age-groups (Table 1). The assigned age-specific role configurations were combined into a single data file to run second-order LCAs, and two or three role trajectories were recommended according to the criteria discussed above. After examining the two models, a three-class model was determined because it differentiated Trajectories 2 and 3 (Table 2). Probabilities from the role configuration and role trajectory analyses were combined to produce graphs of each of the trajectories (Figure 1). Trajectory 1—(1) work and school to some family formation—was the largest group (n = 602), representing 56.2% of women. Trajectory 2—(2) school to family formation—was the smallest group, representing 11.5% of women (n = 123). Trajectory 3—(3) some school to early family formation—represented 32.3% of women (n = 346). All item and class probabilities for first- and second-order LCAs are included in Table 3.

Women in the (1) work and school to some family formation trajectory had a high probability of being in school and work from ages 18 to 21; then, as the probability of being in school decreased, their probability of being in work remained high. Also, from ages 18 to 25/26, the probability of being in a romantic relationship or having children remained low. For the (2) school to family formation trajectory, women had a high probability of being in school and working from ages 18 to 21. Then, as the probability of being in school declined between ages 21 and 22, the probability of being a parent or in a romantic relationship steadily increased through ages 25/26. Finally, for the (3) some school to early family formation trajectory, there was a moderate probability of being in school at ages 18 and 19, but the probability of forming a family (having children or being in a romantic relationship) increased steadily from ages 19 to 25/26. Across all trajectories, women had a relatively high probability of working; therefore, work is not a role that differentiates these trajectories.

Well-being outcomes. To examine change in Physical Health, Mental Health—Psychological Distress, and Mental Health—Risky Behavior, we ran a series of LGC models and selected the model (fixed or free) that fit the data best (Table 4). (1) Work and school to some family formation (Trajectory 1) was the largest group and we created two dummy coded variables, F2nd_2 (0 = all else, 1 = (2) school to family formation) and F2nd_3 (0 = all else, 1 = (3) some school to early family formation), to examine differences in trajectories.

For Physical Health, the model that fit best was the fixed model. The average physical health at age 18 (intercept) was 2.24 (SE = .03, p < .001) and participants on average experienced no change over time (slope = −.00, SE = .01, p = .88). There were no differences at age 18 (intercept) for the (3) some school to early family formation trajectory (B = −0.07, SE = .07, p = .34) or the (2) school to family formation trajectory (B = −0.05, SE = .10, p = .64) compared to the reference group. Changes in Physical Health from 18 to 25/26 were not different for the (2) school to family formation trajectory (B = −0.003, SE = .02, p = .86) compared to the reference group, but those classified as being in the (3) some

Table 2. Goodness-of-Fit and Statistical Class Indicators for Role Configuration for Emerging Adult Women.

<table>
<thead>
<tr>
<th>Class #</th>
<th>AIC</th>
<th>BIC</th>
<th>VLMR-LRT</th>
<th>LMR-ALRT</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4,834.480</td>
<td>4,899.172</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4,453.864</td>
<td>4,588.225</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4,448.905</td>
<td>4,652.935</td>
<td></td>
<td></td>
<td>.50</td>
</tr>
<tr>
<td>4</td>
<td>4,447.913</td>
<td>4,721.610</td>
<td>.45</td>
<td>.45</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4,463.462</td>
<td>4,806.830</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. The bolded class is the one that fits the data best. AIC = Akaike information criteria; BIC = Bayesian information criteria; VLMR-LRT = Vuong-Lo-Mendell-Rubin likelihood ratio test; LMR-ALRT = Lo-Mendell-Rubin adjusted likelihood ratio test; LCA = latent class analysis.
school to early family formation trajectory ($B = -0.03$, $SE = .02, p < .05$) experienced a slight worsening of their physical health between the ages of 18 and 25/26 compared to the reference group.

For Mental Health—Psychological Distress, the best fitting model was the free model. The average psychological distress at age 18 (intercept) was 5.46 ($SE = .14, p < .001$) and participants experienced less psychological distress over time (slope $= -0.49; SE = .19, p < .05$). At age 18 (intercept), the (2) school to family formation trajectory ($B = 0.03, SE = .46, p = .06$) did not differ from the reference group, while the (3) some school to early family formation trajectory ($B = 1.21, SE = .32, p < .05$) experienced more psychological distress at age 18, comparatively. In terms of change in psychological distress, individuals in the (2) school to family formation trajectory ($B = -0.05, SE = .09, p = .60$) did not change differently compared to the reference group. However, individuals in the (3) some school to early family formation trajectory ($B = -0.15, SE = .07, p < .05$) decreased slightly more in psychological distress compared to the reference trajectory; this accelerated decline may be partially due to having higher psychological distress at age 18.

Table 3. Class and Item Probabilities for Women in First- and Second-Order Latent Class Analyses.

<table>
<thead>
<tr>
<th>Age 18 (n = 455)</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall class</td>
<td>.63</td>
<td>.23</td>
<td>.14</td>
</tr>
<tr>
<td>Parenting</td>
<td>.01</td>
<td>.00</td>
<td>.30</td>
</tr>
<tr>
<td>Relationship</td>
<td>.00</td>
<td>.02</td>
<td>.36</td>
</tr>
<tr>
<td>School</td>
<td>.80</td>
<td>.44</td>
<td>.08</td>
</tr>
<tr>
<td>Work</td>
<td>1.00</td>
<td>0.00</td>
<td>.98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age 19 (n = 423)</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall class</td>
<td>.75</td>
<td>.12</td>
<td>.13</td>
</tr>
<tr>
<td>Parenting</td>
<td>.13</td>
<td>.65</td>
<td>.00</td>
</tr>
<tr>
<td>Relationship</td>
<td>.14</td>
<td>.40</td>
<td>.00</td>
</tr>
<tr>
<td>School</td>
<td>.67</td>
<td>.00</td>
<td>.60</td>
</tr>
<tr>
<td>Work</td>
<td>1.00</td>
<td>.94</td>
<td>.08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age 20 (n = 507)</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall class</td>
<td>.47</td>
<td>.42</td>
<td>.10</td>
</tr>
<tr>
<td>Parenting</td>
<td>.49</td>
<td>.004</td>
<td>.09</td>
</tr>
<tr>
<td>Relationship</td>
<td>.41</td>
<td>.07</td>
<td>.00</td>
</tr>
<tr>
<td>School</td>
<td>.23</td>
<td>1.00</td>
<td>.11</td>
</tr>
<tr>
<td>Work</td>
<td>.96</td>
<td>.73</td>
<td>.37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age 21 (n = 347)</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall class</td>
<td>.38</td>
<td>.27</td>
<td>.35</td>
</tr>
<tr>
<td>Parenting</td>
<td>.00</td>
<td>.52</td>
<td>.20</td>
</tr>
<tr>
<td>Relationship</td>
<td>.00</td>
<td>.58</td>
<td>.23</td>
</tr>
<tr>
<td>School</td>
<td>.41</td>
<td>.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Work</td>
<td>.56</td>
<td>.95</td>
<td>.87</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age 22 (n = 363)</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall class</td>
<td>.46</td>
<td>.54</td>
<td>—</td>
</tr>
<tr>
<td>Parenting</td>
<td>.13</td>
<td>.05</td>
<td>—</td>
</tr>
<tr>
<td>Relationship</td>
<td>.55</td>
<td>.10</td>
<td>—</td>
</tr>
<tr>
<td>School</td>
<td>.13</td>
<td>.40</td>
<td>—</td>
</tr>
<tr>
<td>Work</td>
<td>.98</td>
<td>.72</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age 23 (n = 259)</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall class</td>
<td>.15</td>
<td>.68</td>
<td>.17</td>
</tr>
<tr>
<td>Parenting</td>
<td>.20</td>
<td>.29</td>
<td>1.00</td>
</tr>
<tr>
<td>Relationship</td>
<td>.00</td>
<td>.31</td>
<td>1.00</td>
</tr>
<tr>
<td>School</td>
<td>.12</td>
<td>.26</td>
<td>.07</td>
</tr>
<tr>
<td>Work</td>
<td>.28</td>
<td>1.00</td>
<td>.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age 24 (n = 258)</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall class</td>
<td>.41</td>
<td>.58</td>
<td>—</td>
</tr>
<tr>
<td>Parenting</td>
<td>.78</td>
<td>.00</td>
<td>—</td>
</tr>
<tr>
<td>Relationship</td>
<td>.54</td>
<td>.20</td>
<td>—</td>
</tr>
<tr>
<td>School</td>
<td>.13</td>
<td>.33</td>
<td>—</td>
</tr>
<tr>
<td>Work</td>
<td>.90</td>
<td>.79</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age 25 and 26 (n = 252)</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall class</td>
<td>.54</td>
<td>.46</td>
<td>—</td>
</tr>
<tr>
<td>Parenting</td>
<td>.62</td>
<td>.04</td>
<td>—</td>
</tr>
<tr>
<td>Relationship</td>
<td>.62</td>
<td>.00</td>
<td>—</td>
</tr>
<tr>
<td>School</td>
<td>.16</td>
<td>.20</td>
<td>—</td>
</tr>
<tr>
<td>Work</td>
<td>.96</td>
<td>.60</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 3. (continued)

<table>
<thead>
<tr>
<th>Second-order trajectory analysis (n = 1,071)</th>
<th>Trajectory 1</th>
<th>Trajectory 2</th>
<th>Trajectory 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall trajectory</td>
<td>.56</td>
<td>.11</td>
<td>.32</td>
</tr>
</tbody>
</table>

(continued)
or full-time remained high, and the probability of forming a family remained very low (<10%) throughout the majority of emerging adulthood for men; therefore these roles may not differentiate trajectories.

Well-being outcomes. Similar to the women sample, to examine change in the outcome variables, we ran a series of LGC models and selected the model (fixed or free) that fit the data best (Table 8). (3) School to work was the largest group and we created two dummy coded variables, M2nd_2 (0 = all else, 1 = school to family formation) and M2nd_1 (0 = all else, 1 = (1) work and early family formation), to examine differences in trajectories.

For Physical Health, the model that fit best was the fixed model (Table 8). The average physical health at age 18 (intercept) was 1.32 (SE = .03, p < .001) and decreased over time (slope = −.14; SE = .04, p < .001). The trajectory groups did not differ from the reference group at age 18—(2) school to family formation: B = 0.002, SE = .09, p = .98; (3) some school to early family formation: B = 0.06, SE = .07, p = .38. Similarly, the trajectories of the groups did not differ from the reference group—(2) school to family formation: B = −.10, SE = .10, p = .36; (3) some school to early family formation: B = −.14, SE = .08, p = .08.

Table 4. Fit Statistics for LGC Models of Women’s Well-Being Outcomes Ranging From Age 18 to 26.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model</th>
<th>AIC</th>
<th>BIC</th>
<th>χ^2 (df)</th>
<th>RMSEA</th>
<th>CFI</th>
<th>TLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Health</td>
<td>Fixed</td>
<td>16,780.49</td>
<td>16,994.15</td>
<td>69.94(61)</td>
<td>0.012</td>
<td>0.986</td>
<td>0.987</td>
</tr>
<tr>
<td></td>
<td>Free</td>
<td>16,820.27</td>
<td>17,022.75</td>
<td>57.72(55)</td>
<td>0.007</td>
<td>0.995</td>
<td>0.995</td>
</tr>
<tr>
<td>Mental Health—Psychological Distress</td>
<td>Fixed</td>
<td>26,317.05</td>
<td>26,530.71</td>
<td>142.54(61)*</td>
<td>0.035</td>
<td>0.807</td>
<td>0.827</td>
</tr>
<tr>
<td></td>
<td>Free</td>
<td>26,267.18</td>
<td>26,510.65</td>
<td>80.67(55)*</td>
<td>0.021</td>
<td>0.946</td>
<td>0.933</td>
</tr>
<tr>
<td>Mental Health—Risky Behavior</td>
<td>Fixed</td>
<td>14,446.62</td>
<td>14,660.28</td>
<td>195.47(61)*</td>
<td>0.046</td>
<td>0.77</td>
<td>0.744</td>
</tr>
<tr>
<td></td>
<td>Free</td>
<td>14,403.61</td>
<td>14,647.08</td>
<td>140.46(55)*</td>
<td>0.038</td>
<td>0.854</td>
<td>0.819</td>
</tr>
</tbody>
</table>

Note. The bold model is the model selected for reporting. RMSEA = root mean square error of approximation; CFI = comparative fit index; TLI = Tucker–Lewis index; LGC = latent growth curve.

For Mental Health—Psychological Distress, the best fitting model was the free model. The average risky behavior at age 18 (intercept) was 1.32 (SE = .03, p < .001) and decreased over time (slope = −.30; SE = .16, p < .05). There were no differences at age 18 (intercept) for either trajectory groups compared to the reference group—(1) work and early family formation: B = −0.40, SE = .27, p = .19; (2) school to family formation: B = −0.39, SE = .16, p < .001. Individuals in the (2) school to family formation trajectory (B = −0.73, SE = .33, p < .05) decreased more rapidly compared to the reference group. However, individuals in the (1) work and early family formation trajectory (B = −0.35, SE = .42, p = .40) did not differ from the reference group trajectory.

For Mental Health—Risky Behavior, the best fitting model was the free model (Table 8). The average risky behavior at age 18 (intercept) was 1.66 (SE = .03, p < .001) but did not decrease over time (slope = −.014; SE = .01, p = .07). The role trajectory groups did not differ from the reference group.
at age 18—(2) school to family formation: $B = 0.07, SE = .06, p = .24$; (1) work and early family formation: $B = 0.07, SE = .10, p = .47$. Similarly, the role trajectory groups did not differ from the reference group in terms of change—(2) school to family formation: $B = 0.02, SE = 0.01, p = .17$; (1) work and early family formation: $B = 0.01, SE = 0.02, p = .72$.

Discussion

Findings indicated three role trajectories for both emerging adult women and men. Women’s trajectories capture life-course roles of (1) work and early family formation, (2) school to family formation, and (3) school to work. At age 18, women were more likely to be in school and work and attend school from age 18 to about age 21; following this period, the probability of attending school tapered off as the probability of being in a romantic relationship and having children increased.

Emerging Adult Women

Role trajectories. Among emerging adult women, more than half transitioned from work and school to some family formation. Specifically, these women were most likely to work and attend school from age 18 to about age 21; following this period, the probability of attending school tapered off as the probability of being in a romantic relationship and having children increased.

Table 5. Goodness-of-Fit and Statistical Class Indicators for Role Configuration for Emerging Adult Men.

<table>
<thead>
<tr>
<th>Class #</th>
<th>AIC</th>
<th>BIC</th>
<th>VLMR-LRT</th>
<th>LMR-ALRT</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 18</td>
<td>1</td>
<td>1,535.656</td>
<td>1,552.233</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,505.38</td>
<td>1,542.678</td>
<td>0.004</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1,493.249</td>
<td>1,551.268</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1,501.119</td>
<td>1,579.858</td>
<td>.07</td>
<td>.07</td>
</tr>
<tr>
<td>Age 19</td>
<td>1</td>
<td>1,555.699</td>
<td>1,571.907</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,499.458</td>
<td>1,535.927</td>
<td>0.003</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1,486.559</td>
<td>1,543.288</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1,492.339</td>
<td>1,569.329</td>
<td>.01</td>
<td>.01</td>
</tr>
<tr>
<td>Age 20</td>
<td>1</td>
<td>1,761.182</td>
<td>1,777.637</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,701.271</td>
<td>1,738.294</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1,708.321</td>
<td>1,765.913</td>
<td>0.259</td>
<td>0.272</td>
</tr>
<tr>
<td>Age 21</td>
<td>1</td>
<td>1,391.252</td>
<td>1,406.661</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,331.893</td>
<td>1,366.562</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1,332.882</td>
<td>1,386.813</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Age 22</td>
<td>1</td>
<td>1,405.13</td>
<td>1,420.374</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,351.292</td>
<td>1,385.592</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1,357.514</td>
<td>1,410.87</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Age 23</td>
<td>1</td>
<td>1,130.77</td>
<td>1,144.982</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,050.03</td>
<td>1,082.007</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1,056.119</td>
<td>1,105.86</td>
<td>0.44</td>
<td>0.46</td>
</tr>
<tr>
<td>Age 24</td>
<td>1</td>
<td>870.936</td>
<td>884.363</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>839.232</td>
<td>869.441</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>842.362</td>
<td>889.354</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Age 25 and 26</td>
<td>1</td>
<td>1,070.461</td>
<td>1,084.546</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,017.058</td>
<td>1,048.751</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1,011.208</td>
<td>1,060.509</td>
<td>0.004</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1,019.877</td>
<td>1,086.785</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Note. The bolded class is the one that fits the data best. AIC = Akaike information criteria; BIC = Bayesian information criteria; VLMR-LRT = Vuong-Lo-Mendell-Rubin likelihood ratio test; LMR-ALRT = Lo-Mendell-Rubin adjusted likelihood ratio test.
slightly. Importantly, the probability of working was maintained. This trajectory may represent a more conventional conceptualization of emerging adulthood, whereby school attendance is the primary focus followed by a transition into the workforce (Arnett, 2000). For emerging adult women in this trajectory, involvement in romantic relationships and childbearing occurred at a relatively low probability, suggesting an establishment of careers prior to starting families. Family formation for this group appeared to be postponed to the mid-20s (i.e., 24–26). This finding supports assertions made by Shulman and Connolly (2013) who proposed that emerging adults first establish their work identity prior to committing to romantic partners and seek romantic partners whose lives and future goals fit with their career strivings.

Over the past four decades, the United States has experienced an increase in college attendance, and these increases are more pronounced among women (U.S. Department of Education, 2015). Although the primary trend among those living in the United States is to pursue postsecondary education, ostensibly in preparation for a career, results from the current study highlight subpopulations in which family formation takes precedence following the pursuit of college, which is indicative of the second and third trajectories of women in this sample. The second trajectory, (2) school to family formation, was the smallest group. For this trajectory, young women were most likely to attend school from age 18 to 21, followed by a decrease in school attendance and a simultaneous increase in family formation. In comparison to women in the (1) work and school to some family formation trajectory, family formation tended to occur prior to the establishment of a career.

The third trajectory, (3) some school to early family formation, included approximately one third of the young women in the sample. For this trajectory, young women were in school from age 18 to 19, but this probability declined as family formation increased. Young women in this group tended to be in romantic relationships and have children at younger ages compared to those in the first two trajectories. One explanation is that having children impeded their ability to complete school, reflecting the drop off in the probability of school attendance beginning at age 19.

Well-being outcomes. Women in the (3) some school to early family formation trajectory were more psychologically distressed at the outset of emerging adulthood compared to women in the (1) work and school to some family formation trajectory. It appears that the transition from school to having a family relatively early in life might be taxing for young women thereby increasing the amount of psychological distress they experience. Perhaps these young women’s limited education affects their opportunities for employment, adding to existing financial and emotional strain. Despite experiencing high levels of emotionally distress initially, women in this trajectory experienced a decrease in psychological distress as they continued along this trajectory. Given that depressive symptoms tend to decrease across emerging adulthood in general (Galambos, Baker, & Krahn, 2006), it is possible that the early experiences in these women’s lives originally brought on emotional stress, and over time, these women adapted to their family life. As these women have had more time to settle in and adapt to their family formation, their counterparts in the other two trajectories are beginning to transition into work and/or family formation, which are two stressful turning points in the life course. However, the causal direction between psychological distress and shifts in roles is not known; the opposite could be true whereby the psychological distress precipitated shifts in roles.

Table 6. Goodness-of-Fit and Statistical Class Indicators for Role Configuration for Emerging Adult Men.

<table>
<thead>
<tr>
<th>Class #</th>
<th>AIC</th>
<th>BIC</th>
<th>VLMR-LRT</th>
<th>LMR-ALRT</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,549.537</td>
<td>3,599.007</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3,324.744</td>
<td>3,428.63</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3,316.446</td>
<td>3,474.749</td>
<td>0.18</td>
<td>0.18</td>
<td>.50</td>
</tr>
<tr>
<td>4</td>
<td>3,320.608</td>
<td>3,533.328</td>
<td>0.86</td>
<td>0.86</td>
<td></td>
</tr>
</tbody>
</table>

Note. The bolded class is the one that fits the data best. AIC = Akaike information criteria; BIC = Bayesian information criteria; VLMR-LRT = Vuong-Lo-Mendell-Rubin likelihood ratio test; LMR-ALRT = Lo-Mendell-Rubin adjusted likelihood ratio test; LCA = latent class analysis.

Figure 2. Role configuration trajectories for emerging adult men.
However, despite the reduction in psychological distress, women in the (3) some school to early family trajectory experienced overall physical health declines throughout emerging adulthood. According to the Biobehavioral Family Model (BBFM; Wood, 1993; Woods & Denton, 2014; Priest, Roberson, Wojciak, & Woods, under review), psychological distress precipitated from poor family emotional climate is related to later poor physical health. Therefore, perhaps the psychological distress reported in early emerging adulthood triggers a decline in physical health across the developmental period. It may be that factors preceding the role trajectories in emerging adulthood, such as adverse childhood experiences, in addition to the shifts in roles during emerging adulthood are both related to health outcomes.

Finally, young women from each of the three trajectories did not differ in terms of risky behavior. Indeed, each of the roles that were examined in the present study (i.e., school, work, romantic relationship involvement, and having children) involves a great amount of physical and psychological time and effort. It might be the case that emerging adults in general are less prone to engaging in risky behaviors; therefore, variation was not detected in the statistical analyses. In other words, regardless of the particular roles and responsibilities that young women face, their involvement in risky behaviors remains the same.
Emerging Adult Men

Role trajectories. Similar to emerging adult women, emerging adult men followed three trajectories. The first trajectory, (1) work and early family formation, included the smallest proportion of young men in the sample. This trajectory showed increasing probabilities of working, romantic relationship involvement, and having children. For these young men, school attendance appeared to occur at lower probabilities compared to young women. The second trajectory, (2) school to family formation, included about a third of men in the sample—in this trajectory, the probability of school attendance was high from age 18 to 20, and then tapered off, while family formation increased starting at age 20. The third and largest trajectory, (3) school to work, displayed a high probability of school attendance from ages 18 to 20 that tapered off around age 21. At this time, the probability of working tended to remain stable and slightly increased around age 24. The (1) work and school to some family formation trajectory for young women and the (3) school to work trajectory for young men comprised the majority of the sample, reflecting the general pathways that emerging adults are theorized to take (Arnett, 2000). Similar to young women, the majority of young men established their careers first, reserving family formation for their mid-20s. As young men’s careers become solidified, it is possible that this trajectory will continue to include increased probabilities of romantic relationship involvement and having children.

Well-being outcomes. Men from the three trajectories did not differ in terms of physical health and risky behaviors. However, men in the (2) school to family formation trajectory tended to become less psychologically distressed more rapidly over time compared to those in the other two trajectories. Similar to their female counterparts in the (3) some school to early family formation group, it appears that these men have adapted to the role of being a family member as time goes on. While men in the (3) school to work and (1) work and early family formation trajectories are making life transitions and establishing their careers or juggling both work and parenthood, our findings suggest that the men in the (2) school to family formation may have adapted to their roles by their mid-20s.

General trends. The probability of working remained stable from age 18 to 25/26 for all participants in the current study. This pattern could be explained by the inclusion of both part-time and full-time workers. Another salient trend pertained to the co-occurrence of romantic relationship involvement and entrance into parenthood. This suggests that traditional views of family formation, that is, the establishment of long-term, committed romantic relationships preceding childbearing, might not be applicable to the current cohort of emerging adults. Rather, trends found in the present study indicate that the establishment of romantic partnerships and childbearing more frequently occur simultaneously.

Implications

Findings from the present study revealed several different trajectories during emerging adulthood in terms of love and work. The current study revealed that while many individuals follow more conventionally theorized college to family formation trajectories, a sizable portion navigate transitions pertaining to work and family that involve some or even no postsecondary education. This finding sheds light on the different ways that young people transition into adulthood and corresponding adult roles. Currently, the commonly espoused narrative of coming of age in Western society involves the linear trajectory of attending college, joining the workforce, and then starting a family. Indeed, much research on emerging adulthood involves studying college students, the majority of whom follow this traditional path. More attention on emerging adulthood parents, as well as emerging adult parents who pursue education, is sorely needed.

This study has demonstrated that some life-course trajectories are more adaptive in terms of health and well-being than others. For example, both women and men who received some education and begin families early in their lives seemed to experience periods of poor physical and psychological health. These consequences might stem from the limited access to financial, educational, and occupational opportunities that can accompany early family formation. Preventative measures might be taken early on; for example, professionals who work with adolescents and emerging adults might educate young people on the effects of pursuing some trajectories over others.

Table 8. Fit Statistics for LGC Models of Men’s Well-Being Outcomes Ranging From Age 18 to 26.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model</th>
<th>AIC</th>
<th>BIC</th>
<th>χ^2(df)</th>
<th>RMSEA</th>
<th>CFI</th>
<th>TLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Health</td>
<td>Fixed</td>
<td>16,595.01</td>
<td>16,807.77</td>
<td>73.094(61)</td>
<td>0.014</td>
<td>0.978</td>
<td>0.975</td>
</tr>
<tr>
<td></td>
<td>Free</td>
<td>16,592.97</td>
<td>16,835.42</td>
<td>59.056(55)</td>
<td>0.008</td>
<td>0.993</td>
<td>0.991</td>
</tr>
<tr>
<td>Mental Health—Psychological Distress</td>
<td>Fixed</td>
<td>24,292.81</td>
<td>24,505.57</td>
<td>80.452(61)*</td>
<td>0.018</td>
<td>0.968</td>
<td>0.964</td>
</tr>
<tr>
<td></td>
<td>Free</td>
<td>24,287.37</td>
<td>24,529.82</td>
<td>63.01(55)</td>
<td>0.012</td>
<td>0.987</td>
<td>0.984</td>
</tr>
<tr>
<td>Mental Health—Risky Behavior</td>
<td>Fixed</td>
<td>15,857.36</td>
<td>16,070.12</td>
<td>97.08(61)*</td>
<td>0.024</td>
<td>0.947</td>
<td>0.941</td>
</tr>
<tr>
<td></td>
<td>Free</td>
<td>15,853.14</td>
<td>16,095.59</td>
<td>80.86(55)*</td>
<td>0.021</td>
<td>0.962</td>
<td>0.953</td>
</tr>
</tbody>
</table>

Note. The model selected for reporting is given in boldface. RMSEA = root mean square error of approximation; CFI = comparative fit index; TLI = Tucker–Lewis index; LGC = latent growth curve.

*p < .05.
and how early family formation might have negative, albeit temporary, consequences to physical and mental health.

Furthermore, clinicians, educators, and developmental researchers should consider these alternative paths when conceptualizing emerging adults, so that perceptions of individuals during this developmental stage are not limited to trajectories that most individuals take. These within-population differences shed light on the ways emerging adults can navigate their journeys in love and work. Additionally, these trajectories capture emerging adults in a more holistic fashion, considering their roles and responsibilities as a whole rather than focusing on one piece of a person’s identity.

Finally, as discussed by Shulman and Connolly (2013), delaying marriage might reflect emerging adults’ difficulty in coordinating their independent psychosocial tasks with that of their dyadic psychosocial tasks. Relatedly, our results indicated that receiving some education and then forming families early on in life is related to physical and mental health difficulties. This calls attention to the broader challenges that emerging adults face as they negotiate various aspirations in terms of pursuing higher education, working, and being involved in a romantic relationship and/or parenthood. Our results support Shulman and Connolly’s (2013) contention that emerging adults might benefit from a greater awareness surrounding the difficulties in managing social roles and trajectories.

Limitations and Directions for Future Research

This study is not without limitations. First, due to the complex nature of the sequential cohort analyses, these results should only be generalized to group trends and not to an individual level. Individual lives are far more nuanced and complex than these demographic trends suggest, and these findings may not have captured nuanced trajectories that would have resulted from a greater variation in measuring each of the roles. Second, more data were missing toward the end of the age range (e.g., 24+); therefore, results from this portion of the sample may not be as predictive as results earlier in this developmental period. Third, the roles (i.e., work, having children, relationship involvement, and education) were conceptualized inclusively. Results may be different if more stringent definitions were placed on each of these roles. Building on this, future research should examine how emerging adult trajectories differ depending on more nuanced conceptualizations of the different roles by focusing on individual roles and how those role shifts may be related to well-being outcomes. For example, understanding how emerging adults move in and out of part-time and full-time work and/or cohabiting and marital relationships may help us further understand how life trajectories are related to well-being outcomes.

Authors’ Contribution

J. Norona substantially contributed to conceptualization and interpretation of data, drafted the manuscript, gave final approval, and agrees to be accountable for all aspects of the work in ensuring that questions relating to the accuracy or integrity of any part of the work are appropriately investigated and resolved. P. N. E. Roberson substantially contributed to conceptualization and/or design; contributed to data collection, analysis, and/or interpretation of data; drafted the manuscript; critically revised the manuscript for important intellectual content; gave final approval; and agrees to be accountable for all aspects of the work in ensuring that questions relating to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Z. Dirnberger substantially contributed to conceptualization and interpretation of data, critically revised the manuscript for important intellectual content, gave final approval, and agrees to be accountable for all aspects of the work in ensuring that questions relating to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

References

Author Biographies

Patricia N. E. Roberson has a postdoctoral appointment in the Psychology Department at the University of Tennessee, Knoxville. Her primary research interest is in biopsychosocial approaches to health focusing on the interaction of romantic relationship quality and stability with mental and physical health across the life course. Additionally, she specializes in quantitative methodology with repeated measures and dependent groups.

Jerika C. Norona is a graduate student in the clinical psychology program at the University of Tennessee. Her research focuses on romantic experiences in adolescence and emerging adulthood.

Jennifer Zorotovich is an assistant professor of child and family development at Georgia Southern University. She received her PhD in Child and Family Studies from the University of Tennessee. Her research interests pertain to the construct of emerging adulthood and its applicability among diverse groups, positive well-being, indicators of social status, and issues related to later life.

Zachary Dirnberger is a contract archaeologist and a graduate student enrolled in Georgia Southern University’s master of arts in Social Science program. His thesis work focuses on the excavation of domestic structures associated with an 18th-century rice plantation in Jasper County, SC.